Saltu al enhavo

Masocentro

El Vikipedio, la libera enciklopedio
(Alidirektita el Centro de maso)
La tuta korpo kunmetita el du forkoj, ŝtopilo kaj dentpinglo havas sian masocentron tuj malsupre de la pinto de la globkrajono. Pro tio la forto aplikata per la pinto ekvilibrigas ĝin.

En fiziko la masocentro[1] estas tiu punkto pri iu korpo, rilate al kiu gravito ne povas kaŭzi tordomomanton.

La masocentro de rigida korpo estas tiu punkto, en kiu la pezofortoj agantaj sur ĉiuj eroj de la korpo estas ekvilibrigeblaj per nur unu forto, direktita supren. La grando de tiu forto egalas al la tuta pezoforto aganta sur la korpon.

Oni povas konsideri ankaŭ, ke la masocentro estas tiu masopunkto, en kiu agas la tuta pezoforto de ĉiuj eroj de la korpo.

En homogenaj korpoj (ĉie faritaj el sama materialo), la simetriaj aksoj trapasas la masocentron kaj pro tio, se homogena korpo havas plurajn simetriajn aksojn, ili kruciĝas en la centro de simetrio, kiu estas ankaŭ la masocentro; ekzemple la centro de globo.

Matematika difino

[redakti | redakti fonton]

La situa vektoro de masocentro estas donita per pondita aritmetika meznombro, konsiderante pri ĉiuj elementoj de korpo ĝiajn situajn vektorojn kaj ĝiajn eretajn masojn , kiuj dependas de ĝiaj densoj :

kie estas la denso en loko difinita per kaj estas volumena elemento. La denominatoro de tiuj esprimoj estas la tuta maso de la konsiderita korpo.

En homogena korpo, la denso povas esti konsiderita kiel faktoro ekster la integralo, la masocentro tiam koincidas kun la volumena centro (la geometria centro). En multaj kazoj, la kalkulo povas tiele esti simpligita; la masocentro estas la centro de simetrio.

Pri diskretaj sistemoj , anstataŭ la volumena integralo oni kalkulas la situan vektoron per ponditan aritmetikan meznombron, konsiderante pri ĉiuj elementoj de korpo ĝiajn situajn vektorojn, adicio anstataŭas la ĉi-supran volumenan integralon:

kie estas la sumo de ĉiuj elementaj masoj :

Kiam oni interesiĝas aparte pri la inercio, oni diras inercicentromasocentro.

Kiam oni interesiĝas aparte pri la pezo, oni diras pezocentrogravitocentro, sufiĉas en la ĉi-supraj formuloj anstataŭgi la elementajn masojn per la elementaj pezoj de la konsiderita korpo, kies la tuta pezo estas:

Simileco kaj malsimileco de terminoj

[redakti | redakti fonton]

La terminoj masocentro kaj gravitocentro maldistingiĝas en unuforma gravita kampo, sed ili diferencas en ne-unuforma gravita kampo pro la fakto, ke malsamas la gravita forto sur elementoj eĉ kun sama maso, ĉar dependas de la pozicio de tiuj elementoj en la konsiderita korpo.

Referencoj

[redakti | redakti fonton]
  1. Plena Ilustrita Vortaro 2002 p. 187