Granda rombo-tri-seplatera kahelaro
Granda rombo-tri-seplatera kahelaro | |
Projekcio kiel diska modelo de Poincaré de la hiperbola ebeno. | |
Vertica figuro | 4.6.14 |
Bildo de vertico | |
Simbolo de Wythoff | 2 7 3 | |
Simbolo de Schläfli | aŭ t0,1,2{7,3} |
Figuro de Coxeter-Dynkin | |
Geometria simetria grupo | [7,3] |
Duala | Ordo-3 dusekcita seplatera kahelaro |
Bildo de duala | |
En geometrio, la granda rombo-tri-seplatera kahelaro aŭ entutotranĉita ordo-7 triangula kahelaro aŭ entutotranĉita ordo-3 seplatera kahelaro estas duonregula kahelaro de la hiperbola ebeno. Kiel la nomoj sugestas, ĝi povas esti farita per entutotranĉo de la regula ordo-7 triangula kahelaro aŭ per entutotranĉo de la regula ordo-3 seplatera kahelaro.
En la kahelaro estas unu kvadrato, unu seslatero kaj unu dekkvarlatero sur ĉiu vertico. Ĝia simbolo de Schläfli estas t0,1,2{3,7} aŭ t0,1,2{7,3}.
Estas nur unu unuforma kolorigo de granda rombo-tri-seplatera kahelaro, kun ĉiu speco de edroj kun sia aparta koloro.
Vico de rilatantaj pluredroj kaj kahelaroj
[redakti | redakti fonton]La granda rombo-tri-seplatera kahelaro estas ero de vico de entutotranĉitaj regulaj pluredroj kaj regulaj kahelaroj de la eŭklida kaj hiperbola ebenoj kun verticaj figuroj (4.6.2n). Ĉi tiuj pluredroj estas zonopluredroj.
Dosiero:Uniform polyhedron-23-t01.png Seslatera prismo (4.6.4) |
Senpintigita okedro (4.6.6) |
Granda rombokub-okedro (4.6.8) |
Granda rombo-dudek-dekduedro (4.6.10) |
Granda rombo-tri-seslatera kahelaro (4.6.12) |
Granda rombo-tri-seplatera kahelaro (4.6.14) |
Granda rombo-tri-oklatera kahelaro (4.6.16) |
Granda rombo-tri-naŭlatera kahelaro (4.6.18) |
Duala kahelaro
[redakti | redakti fonton]La duala kahelaro estas ordo-3 dusekcita seplatera kahelaro, farita per disdivido de ĉiu seplatero de la ordo-3 seplatera kahelaro en 14 triangulojn per la centra punkto kaj la centraj punktoj de la lateroj. En la bildo la trianguloj estas kolorigita alterne blanke kaj blue.
Ĉiu triangulo en ĉi tiu duala kahelaro prezentas fundamentan domajnon de la konstruo de Wythoff por la geometria simetria grupo [7,3].
Vidu ankaŭ
[redakti | redakti fonton]Referencoj
[redakti | redakti fonton]- Branko Grünbaum, Shephard G. C.. (1987) Tilings and Patterns - Kahelaroj kaj ŝablonoj. Novjorko: W. H. Freeman. ISBN 0-7167-1193-1.
Eksteraj ligiloj
[redakti | redakti fonton]- Eric W. Weisstein, Hiperbola kahelaro en MathWorld.
- Eric W. Weisstein, Hiperbola disko de Poincaré en MathWorld.
- Galerio de hiperbolaj kaj sferaj kahelaroj Arkivigite je 2013-03-24 per la retarkivo Wayback Machine
- KaleidoTile 3 - kleriga programaro por krei sferajn, ebenajn kaj hiperbolajn kahelarojn
- Hiperbolaj ebenaj kahelaroj Arkivigite je 2011-09-27 per la retarkivo Wayback Machine