Saltu al enhavo

Ordo-3 senpintigita seplatera kahelaro

Nuna versio (nereviziita)
El Vikipedio, la libera enciklopedio
Ordo-3 senpintigita seplatera kahelaro
Bildo
Projekcio kiel diska modelo de Poincaré de la hiperbola ebeno.
Vertica figuro 3.14.14
Simbolo de Wythoff 2 3 | 7
Simbolo de Schläfli t{7,3}
Figuro de Coxeter-Dynkin
Geometria simetria grupo [7,3]
Duala Ordo-7 trilateropiramidigita triangula kahelaro
Bildo de duala Bildo de duala
vdr

En geometrio, la senpintigita ordo-3 seplatera kahelaro estas duonregula kahelaro de la hiperbola ebeno. Kiel la nomo sugestas, ĝi povas esti farita per senpintigo de la regula ordo-3 seplatera kahelaro.

En la kahelaro estas unu triangulo kaj du dekkvarlateroj ĉirkaŭ ĉiu vertico. Ĝia simbolo de Schläfli estas t0,1{7,3}.

Vico de rilatantaj pluredroj kaj kahelaroj

[redakti | redakti fonton]

La senpintigita seplatera kahelaro estas ero de vico de senpintigitaj regulaj pluredroj kaj regulaj kahelaroj de la eŭklida kaj hiperbola ebenoj kun verticaj figuroj (3.2n.2n). .


Triangula prismo (3.4.4)

Senpintigita kvaredro (3.6.6)

Senpintigita kubo (3.8.8)

Senpintigita dekduedro (3.10.10)

Senpintigita seslatera kahelaro (3.12.12)

Senpintigita seplatera kahelaro (3.14.14)

Senpintigita oklatera kahelaro (3.16.16)

Senpintigita naŭlatera kahelaro (3.18.18)

Duala kahelaro

[redakti | redakti fonton]

La duala kahelaro estas ordo-7 trilateropiramidigita triangula kahelaro, kiu estas ordo-7 triangula kahelaro en kun ĉiu triangulo estas dividita en trion per centra punkto.

Vidu ankaŭ

[redakti | redakti fonton]

Referencoj

[redakti | redakti fonton]
  • Branko Grünbaum, Shephard G. C.. (1987) Tilings and Patterns - Kahelaroj kaj ŝablonoj. Novjorko: W. H. Freeman. ISBN 0-7167-1193-1.

Eksteraj ligiloj

[redakti | redakti fonton]